8 queens problem - significado y definición. Qué es 8 queens problem
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es 8 queens problem - definición

MATHEMATICAL CHESS PROBLEM OF PLACING EIGHT CHESS QUEENS ON AN 8×8 CHESSBOARD SO THAT NO TWO QUEENS THREATEN EACH OTHER
8 queens problem; 8 queens puzzle; Eight queens problem; 8 queens; N-queens problem; N queens puzzle; N-queens; Eight-queens problem; N queens; N queens problem; Chessboard quiz; Eight queens; Queens problem; Eight queen problem; 8-Queens Problem; N Queens; Nqueens; Queen's independence problem; Eight-queens puzzle; N-Queens problem; Eight Queens puzzle; N-Queens; 8-queens
  • min-conflicts]] solution to 8 queens

8 queens problem         
Eight queens puzzle         
The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions.
eight queens problem         

Wikipedia

Eight queens puzzle

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques.

The eight queens puzzle is a special case of the more general n queens problem of placing n non-attacking queens on an n×n chessboard. Solutions exist for all natural numbers n with the exception of n = 2 and n = 3. Although the exact number of solutions is only known for n ≤ 27, the asymptotic growth rate of the number of solutions is approximately (0.143 n)n.